🚨 Vazou!! 🚨

Liberei as 45 questões que vão cair no ENEM 2025!

🚨 LIBERADO DESCONTO DE R$ 700!! 🚨

Acabei de liberar a maior oferta já feita do xequemat medicina. Se você quer passar em Medicina em 2025, essa é a hora de agir!

Questão 158 – ENEM 2022

Questão 158 – ENEM 2022

Questão 158 – Função de Segundo Grau

Ao analisar os dados de uma epidemia em uma cidade, peritos obtiveram um modelo que avalia a quantidade de pessoas infectadas a cada mês, ao longo de um ano. O modelo é dado por p(t) = -t2 + 10t + 24, sendo t um número natural, variando de 1 a 12, que representa os meses do ano, e p(t) a quantidade de pessoas infectadas no mês t do ano. Para tentar diminuir o número de infectados no próximo ano, a Secretaria Municipal de Saúde decidiu intensificar a propaganda oficial sobre os cuidados com a epidemia. Foram apresentadas cinco propostas (I, II, III, IV e V), com diferentes períodos de intensificação das propagandas:

•  I: 1 ≤ t ≤ 2;

• II: 3 ≤ t ≤ 4;

• III: 5 ≤ t ≤ 6;

• IV: 7 ≤ t ≤ 9;

• V: 10 ≤ t ≤ 12.

A sugestão dos peritos é que seja escolhida a proposta cujo período de intensificação da propaganda englobe o mês em que, segundo o modelo, há a maior quantidade de infectados. A sugestão foi aceita.

A proposta escolhida foi a

A) I.

B) II.

C) III.

D) IV.

E) V.

Solução

Para encontrar quando foi a maior quantidade de infectados precisamos encontrar o t do vértice (o y nos dá o número máximo de infectados).

Usando a fórmula temos:

tv = -b/2a

tv = -10/-2 = 5

Alternativa C

Veja a resolução com mais detalhes no vídeo abaixo!

Gostou do conteúdo? Compartilhe com um colega:

guest
0 Comentários
mais antigos
mais recentes Mais votado
Feedbacks embutidos
Ver todos os comentários

Questões relacionadas:

Pesquise por exemplo:

• Questão 54 enem 2019
• Enem 2018
• Função

Pop up blog para curso semanal gratuito v2 (PC)
Pop up blog para curso semanal gratuito v2 (mobile)

Seja aprovado ainda esse ano no Enem

Professor revela em aulas gratuitas de matemática toda segunda-feira como Você pode ser aprovado no ENEM 2025!

Cadastre-se para revelar o segredo: