Questão 147 – Geometria Plana
Uma criança deseja criar triângulos utilizando palitos de fósforo de mesmo comprimento. Cada triângulo será construído com exatamente 17 palitos e pelo menos um dos lados do triângulo deve ter o comprimento de exatamente 6 palitos. A figura ilustra um triângulo construído com essas características.
A quantidade máxima de triângulos não congruentes dois a dois que podem ser construídos é
A) 3.
B) 5.
C) 6.
D) 8.
E) 10.
Solução
Sendo no total 17 palitos e um dos lados com 6 palitos, a soma dos outros dois lados é 11. A condição de existência nos diz que um lado deve ser menor do que a soma dos outros dois lados então vamos considerar cada opção de lados
6,10,1 -> 10 > 6 + 1, então não é um triângulo
6,9,2 -> 9 > 2 + 6, então não é triângulo
6,8,3 todos os lados satisfazem a condição de existência
6,7,4 todos os lados satisfazem a condição de existência
6,6,5 todos os lados satisfazem a condição de existência
Alternativa A